Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Can J Neurol Sci ; 48(1): 59-65, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-2265734

ABSTRACT

BACKGROUND: We investigated the impact of regionally imposed social and healthcare restrictions due to coronavirus disease 2019 (COVID-19) to the time metrics in the management of acute ischemic stroke patients admitted at the regional stroke referral site for Central South Ontario, Canada. METHODS: We compared relevant time metrics between patients with acute ischemic stroke receiving intravenous tissue plasminogen activator (tPA) and/or endovascular thrombectomy (EVT) before and after the declared restrictions and state of emergency imposed in our region (March 17, 2020). RESULTS: We identified a significant increase in the median door-to-CT times for patients receiving intravenous tPA (19 min, interquartile range (IQR): 14-27 min vs. 13 min, IQR: 9-17 min, p = 0.008) and/or EVT (20 min, IQR: 15-33 min vs. 11 min, IQR: 5-20 min, p = 0.035) after the start of social and healthcare restrictions in our region compared to the previous 12 months. For patients receiving intravenous tPA treatment, we also found a significant increase (p = 0.005) in the median door-to-needle time (61 min, IQR: 46-72 min vs. 37 min, IQR: 30-50 min). No delays in the time from symptom onset to hospital presentation were uncovered for patients receiving tPA and/or endovascular reperfusion treatments in the first 1.5 months after the establishment of regional and institutional restrictions due to the COVID-19 pandemic. CONCLUSION: We detected an increase in our institutional time to treatment metrics for acute ischemic stroke patients receiving tPA and/or endovascular reperfusion therapies, related to delays from hospital presentation to the acquisition of cranial CT imaging for both tPA- and EVT-treated patients, and an added delay to treatment with tPA.


Délais dans le traitement en milieu hospitalier des AVC aigus dans le contexte de la pandémie de COVID-19. CONTEXTE: Nous nous sommes penchés, dans le contexte de la pandémie de COVID-19, sur l'impact de restrictions régionales imposées dans le domaine social et dans les soins de santé sur les délais de prise en charge de patients victimes d'un AVC aigu. À noter que ces patients ont été admis dans un centre régional de traitement des AVC situé dans le centre-ouest de l'Ontario (Canada). MÉTHODES: Nous avons comparé entre eux les délais de prise en charge de patients ayant bénéficié d'activateurs tissulaires du plasminogène par intraveineuse (tPA) et/ou d'une procédure de thrombectomie endovasculaire (TE) avant et après la mise sur pied de restrictions et l'imposition d'un état d'urgence sanitaire dans notre région (17 mars 2020). RÉSULTATS: Après la mise sur pied de ces restrictions, nous avons identifié, par rapport aux 12 mois précédent, une augmentation notable des délais médians entre l'arrivée à l'hôpital et un examen de tomodensitométrie dans le cas de patients bénéficiant de tPA (19 minutes, EI : 14­27 minutes contre 13 minutes, EI : 9­17 minutes ; p = 0,008) et/ou d'une procédure de TE (20 minutes, EI : 15­33 minutes contre 11 minutes, EI : 5­20 minutes ; p = 0,035). Pour ce qui est des patients bénéficiant de tPA, nous avons également observé une augmentation importante (p = 0,005) des délais médians entre leur arrivée à l'hôpital et l'injection d'un traitement (61 minutes, EI : 46­72 minutes contre 37 minutes, EI : 30­50 minutes). Enfin, dans le premier mois et demi suivant la mise sur pied des restrictions régionales et institutionnelles attribuables à la pandémie de COVID-19, aucun délai supplémentaire entre l'apparition des premiers symptômes d'un AVC et l'arrivée à l'hôpital n'a été remarqué pour des patients bénéficiant de tPA et/ou d'une procédure de TE. CONCLUSION: En somme, nous avons détecté une augmentation de nos délais de traitement dans le cas de patients victimes d'un AVC aigu ayant bénéficié de tPA et/ou d'une procédure de TE. Cela peut être attribué à une augmentation des délais de présentation à l'hôpital mais aussi à des délais dans l'obtention d'images de tomodensitométrie pour des patients traités avec des tPA et une procédure de TE, sans compter des délais accrus pour bénéficier d'un traitement de tPA.


Subject(s)
Endovascular Procedures/statistics & numerical data , Ischemic Stroke/therapy , Thrombectomy/statistics & numerical data , Thrombolytic Therapy/statistics & numerical data , Time-to-Treatment/trends , Aged , Aged, 80 and over , COVID-19 , Delivery of Health Care/trends , Female , Fibrinolytic Agents/therapeutic use , Humans , Ischemic Stroke/diagnostic imaging , Male , Middle Aged , Ontario , SARS-CoV-2 , Tissue Plasminogen Activator/therapeutic use , Tomography, X-Ray Computed/statistics & numerical data
2.
Crit Care ; 27(1): 55, 2023 02 10.
Article in English | MEDLINE | ID: covidwho-2255724

ABSTRACT

BACKGROUND: Fibrinolysisis is essential for vascular blood flow maintenance and is triggered by endothelial and platelet release of tissue plasminogen activator (t-PA). In certain critical conditions, e.g. sepsis, acute respiratory failure (ARF) and trauma, the fibrinolytic response is reduced and may lead to widespread thrombosis and multi-organ failure. The mechanisms underpinning fibrinolysis resistance include reduced t-PA expression and/or release, reduced t-PA and/or plasmin effect due to elevated inhibitor levels, increased consumption and/or clearance. This study in critically ill patients with fibrinolysis resistance aimed to evaluate the ability of t-PA and plasminogen supplementation to restore fibrinolysis with assessment using point-of-care ClotPro viscoelastic testing (VET). METHODS: In prospective, observational studies, whole-blood ClotPro VET evaluation was carried out in 105 critically ill patients. In 32 of 58 patients identified as fibrinolysis-resistant (clot lysis time > 300 s on the TPA-test: tissue factor activated coagulation with t-PA accelerated fibrinolysis), consecutive experimental whole-blood VET was carried out with repeat TPA-tests spiked with additional t-PA and/or plasminogen and the effect on lysis time determined. In an interventional study in a patient with ARF and fibrinolysis resistance, the impact of a 24 h intravenous low-dose alteplase infusion on coagulation and fibrinolysis was prospectively monitored using standard ClotPro VET. RESULTS: Distinct response groups emerged in the ex vivo experimental VET, with increased fibrinolysis observed following supplementation with (i) t-PA only or (ii) plasminogen and t-PA. A baseline TPA-test lysis time of > 1000 s was associated with the latter group. In the interventional study, a gradual reduction (25%) in serial TPA-test lysis times was observed during the 24 h low-dose alteplase infusion. CONCLUSIONS: ClotPro viscoelastic testing, the associated TPA-test and the novel experimental assays may be utilised to (i) investigate the potential mechanisms of fibrinolysis resistance, (ii) guide corrective treatment and (iii) monitor in real-time the treatment effect. Such a precision medicine and personalised treatment approach to the management of fibrinolysis resistance has the potential to increase treatment benefit, while minimising adverse events in critically ill patients. TRIAL REGISTRATION: VETtiPAT-ARF, a clinical trial evaluating ClotPro-guided t-PA (alteplase) administration in fibrinolysis-resistant patients with ARF, is ongoing (ClinicalTrials.gov NCT05540834 ; retrospectively registered September 15th 2022).


Subject(s)
Fibrinolysis , Tissue Plasminogen Activator , Humans , Tissue Plasminogen Activator/pharmacology , Tissue Plasminogen Activator/therapeutic use , Fibrin Clot Lysis Time , Point-of-Care Systems , Prospective Studies , Feasibility Studies , Critical Illness/therapy , Plasminogen/pharmacology
3.
BMC Neurol ; 23(1): 10, 2023 Jan 09.
Article in English | MEDLINE | ID: covidwho-2196100

ABSTRACT

BACKGROUND: We investigated the influence of the coronavirus disease 2019 (COVID-19) pandemic on the number of patients with acute ischemic stroke who received intravenous thrombolytic therapy (ITT) in Dalian, China, in 2020. METHODS: This retrospective descriptive study, conducted from February 1, 2020, to August 31, 2020, examined 13 hospitals in Dalian that participated in the "stroke emergency map". To use this "stroke emergency map" of China, patients followed the official "Stroke Map" WeChat account and dialed 120 for emergency medical services. We analyzed the number of patients with acute ischemic stroke who underwent ITT. In particular, we examined the onset-to-door time (ODT), door-to-needle time (DNT), onset-to-needle time (ONT), mode of transportation to the hospital, and National Institutes of Health Stroke Scale (NIHSS) scores before and after ITT. Data were collected for the aforementioned period and compared with the 2021 baseline data from the same time of year. The Mann‒Whitney U test was performed for data analysis. RESULTS: Compared with the data from 2020, the number of patients with acute ischemic stroke who underwent ITT increased (from 735 to 1719 cases) in 2021, but the DNT decreased (from 59 to 45 min; P = 0.002). Moreover, 83.9% of patients in 2020 presented to the hospital without ambulance transport, compared to 81.1% of patients in the 2021 non-COVID-19 pandemic period. Patients with NIHSS scores of 6-14 were more likely to call an ambulance for transport to the hospital than to transport themselves to the emergency department. CONCLUSIONS: During the 2020 COVID-19 pandemic, the DNT was prolonged as a result of strengthened fever surveillance. In 2021, the number of patients with acute ischemic stroke who underwent ITT increased compared to the previous year. Notably, the growth in the number of patients with acute ischemic stroke who underwent ITT benefited from both the "stroke emergency map" of China and the "green channel," a novel treatment approach that focuses on the rational design of the rescue process. TRIAL REGISTRATION: Our study was a retrospective descriptive study, not a clinical trial, thus we did not have to register for clinical trials.


Subject(s)
Brain Ischemia , COVID-19 , Ischemic Stroke , Stroke , Humans , Tissue Plasminogen Activator/therapeutic use , Ischemic Stroke/drug therapy , Ischemic Stroke/epidemiology , Pandemics , Retrospective Studies , Brain Ischemia/complications , Brain Ischemia/drug therapy , Brain Ischemia/epidemiology , Treatment Outcome , Fibrinolytic Agents/therapeutic use , Thrombolytic Therapy , Stroke/drug therapy , Stroke/epidemiology , Time-to-Treatment
4.
Eur Neurol ; 85(5): 349-366, 2022.
Article in English | MEDLINE | ID: covidwho-1973983

ABSTRACT

BACKGROUND AND AIM: Despite progress made over the last 30 years, stroke is still a leading cause of disability and mortality; likewise, its burden is expected to increase over the next decades, due to population growth and aging. The development of drugs with better safety-efficacy profiles as well as strategies able to improve ischemic stroke management from the pre-hospital setting is needed. SUMMARY: The pathophysiology of ischemic stroke involves multiple pathways resulting in cerebral artery obstruction and brain tissue ischemia. To date, the only approved drug for acute ischemic stroke is intravenous thrombolytic alteplase. Intravenous thrombolysis (IVT) can be administered alone or in combination with endovascular treatment (EVT) with mechanical thrombectomy, in case of large vessel occlusion and generally within 6 h from symptoms onset. The risk of potential bleeding complications, especially symptomatic intracerebral hemorrhage, is one of the reasons for the reluctance to administer IVT. Tenecteplase is a promising alternative fibrinolytic agent, having a better safety profile than alteplase. Moreover, recent evidences have allowed an extension of the IVT ± EVT time window for patients with unknown onset time and for those with a known onset time thanks to the new "tissue-window" approach guided by advanced neuroimaging techniques, which also helps in collateral circulation estimation. Regarding primary-secondary prevention, researchers are focused on improving the efficacy of antithrombotic drugs with a "hemostasis-sparing" approach. Neuroprotective agents are also under development, particularly stem cells. The COVID-19 pandemic has critically stressed global healthcare systems, with collateral damage resulting in access delivery of only emergency care, such as ischemic stroke. Regarding telemedicine, it has had a minor role in acute stroke management, and with the onset of COVID-19, this role will most likely be adopted to increase access and delivery in stroke assessment, but also in the follow-up.


Subject(s)
Brain Ischemia , COVID-19 , Endovascular Procedures , Ischemic Stroke , Neuroprotective Agents , Stroke , Brain Ischemia/complications , Brain Ischemia/drug therapy , COVID-19/complications , Endovascular Procedures/methods , Fibrinolytic Agents/therapeutic use , Humans , Neuroprotective Agents/therapeutic use , Pandemics , Stroke/diagnosis , Stroke/drug therapy , Tenecteplase/therapeutic use , Thrombectomy/methods , Thrombolytic Therapy , Tissue Plasminogen Activator/therapeutic use , Treatment Outcome
5.
Viruses ; 14(8)2022 07 22.
Article in English | MEDLINE | ID: covidwho-1957455

ABSTRACT

Background. Fixed-dose ultrasound-assisted catheter-directed thrombolysis (USAT) rapidly improves hemodynamic parameters and reverses right ventricular dysfunction caused by acute pulmonary embolism (PE). The effectiveness of USAT for acute PE associated with coronavirus disease 2019 (COVID-19) is unknown. Methods and results. The study population of this cohort study consisted of 36 patients with an intermediate-high- or high-risk acute PE treated with a fixed low-dose USAT protocol (r-tPA 10-20 mg/15 h). Of these, 9 patients tested positive for COVID-19 and were age-sex-matched to 27 patients without COVID-19. The USAT protocol included, beyond the infusion of recombinant tissue plasminogen activator, anti-Xa-activity-adjusted unfractionated heparin therapy (target 0.3-0.7 U/mL). The study outcomes were the invasively measured mean pulmonary arterial pressure (mPAP) before and at completion of USAT, and the National Early Warning Score (NEWS), according to which more points indicate more severe hemodynamic impairment. Twenty-four (66.7%) patients were men; the mean age was 67 ± 14 years. Mean  ±  standard deviation mPAP decreased from 32.3 ± 8.3 to 22.4 ± 7.0 mmHg among COVID-19 patients and from 35.4 ± 9.7 to 24.6 ± 7.0 mmHg among unexposed, with no difference in the relative improvement between groups (p = 0.84). Within 12 h of USAT start, the median NEWS decreased from six (Q1-Q3: 4-8) to three (Q1-Q3: 2-4) points among COVID-19 patients and from four (Q1-Q3: 2-6) to two (Q1-Q3: 2-3) points among unexposed (p = 0.29). One COVID-19 patient died due to COVID-19-related complications 14 days after acute PE. No major bleeding events occurred. Conclusions. Among patients with COVID-19-associated acute PE, mPAP rapidly decreased during USAT with a concomitant progressive improvement of the NEWS. The magnitude of mPAP reduction was similar in patients with and without COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Pulmonary Embolism , Acute Disease , Aged , Aged, 80 and over , COVID-19/complications , Catheters , Cohort Studies , Female , Heparin , Humans , Male , Middle Aged , Pulmonary Embolism/diagnostic imaging , Pulmonary Embolism/drug therapy , Retrospective Studies , Thrombolytic Therapy/methods , Tissue Plasminogen Activator/therapeutic use , Treatment Outcome
7.
J Telemed Telecare ; 28(7): 481-487, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1927941

ABSTRACT

BACKGROUND: During the COVID-19 pandemic emergency departments have noted a significant decrease in stroke patients. We performed a timely analysis of the Bavarian telestroke TEMPiS "working diagnosis" database. METHODS: Twelve hospitals from the TEMPiS network were selected. Data collected for January through April in years 2017 through 2020 were extracted and analyzed for presumed and definite ischemic stroke (IS), amongst other disorders. In addition, recommendations for intravenous thrombolysis (rtPA) and endovascular thrombectomy (EVT) were noted and mobility data of the region analyzed. If statistically valid, group-comparison was tested with Fisher's exact test considering unpaired observations and ap-value < 0.05 was considered significant. RESULTS: Upon lockdown in mid-March 2020, we observed a significant reduction in recommendations for rtPA compared to the preceding three years (14.7% [2017-2019] vs. 9.2% [2020], p = 0.0232). Recommendations for EVT were significantly higher in January to mid-March 2020 compared to 2017-2019 (5.4% [2017-2019] vs. 9.3% [2020], p = 0.0013) reflecting its increasing importance. Following the COVID-19 lockdown mid-March 2020 the number of EVT decreased back to levels in 2017-2019 (7.4% [2017-2019] vs. 7.6% [2020], p = 0.1719). Absolute numbers of IS decreased in parallel to mobility data. CONCLUSIONS: The reduced stroke incidence during the COVID-19 pandemic may in part be explained by patient avoidance to seek emergency stroke care and may have an association to population mobility. Increasing mobility may induce a rebound effect and may conflict with a potential second COVID-19 wave. Telemedical networks may be ideal databases to study such effects in near-real time.


Subject(s)
COVID-19 , Stroke , COVID-19/epidemiology , Communicable Disease Control , Humans , Incidence , Pandemics , Stroke/drug therapy , Stroke/therapy , Thrombectomy , Thrombolytic Therapy , Tissue Plasminogen Activator/therapeutic use , Treatment Outcome
8.
ASAIO J ; 68(8): 1017-1023, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1865005

ABSTRACT

Coronavirus disease 2019 (COVID-19) has drastically increased the number of patients requiring extracorporeal life support. We investigate the efficacy and safety of low-dose recombinant tissue-type plasminogen activator (rtPA) injection into exhausted oxygenators to delay exchange in critically ill COVID-19 patients on veno-venous extracorporeal membrane oxygenation (V-V ECMO). Small doses of rtPA were injected directly into the draining section of a V-V ECMO circuit. We compared transmembrane pressure gradient, pump head efficiency, membrane arterial partial oxygen pressure, and membrane arterial partial carbon dioxide pressure before and after the procedure. Bleeding was compared with a matched control group of 20 COVID-19 patients on V-V ECMO receiving standard anticoagulation. Four patients received 16 oxygenator instillations with rtPA at 5, 10, or 20 mg per dose. Administration of rtPA significantly reduced transmembrane pressure gradient (Δ pm = 54.8 ± 18.1 mmHg before vs . 38.3 ± 13.3 mmHg after, p < 0.001) in a dose-dependent manner (Pearson's R -0.63, p = 0.023), allowing to delay oxygenator exchange, thus reducing the overall number of consumed oxygenators. rtPA increased blood flow efficiency η (1.20 ± 0.28 ml/revolution before vs . 1.24 ± 0.27 ml/r, p = 0.002). Lysis did not affect membrane blood gases or systemic coagulation. Minor bleeding occurred in 2 of 4 patients (50%) receiving oxygenator lysis as well as 19 of 20 control patients (95%). Lysis of ECMO oxygenators effectively delays oxygenator exchange, if exchange is indicated by an increase in transmembrane pressure gradient. Application of lysis did not result in higher bleeding incidences compared with anticoagulated patients on V-V ECMO for COVID-19.


Subject(s)
COVID-19 Drug Treatment , Extracorporeal Membrane Oxygenation , Oxygenators, Membrane , Tissue Plasminogen Activator , Blood Gas Analysis , Extracorporeal Membrane Oxygenation/instrumentation , Extracorporeal Membrane Oxygenation/methods , Humans , Tissue Plasminogen Activator/therapeutic use
10.
J Thromb Haemost ; 20(4): 919-928, 2022 04.
Article in English | MEDLINE | ID: covidwho-1626880

ABSTRACT

BACKGROUND: Resistance to fibrinolysis, levels of procoagulant/antifibrinolytic neutrophil extracellular traps (NETs), and the severity of acute ischemic stroke (AIS) are increased by COVID-19. Whether NETs are components of AIS thrombi from COVID-19 patients and whether COVID-19 impacts the susceptibility of these thrombi to thrombolytic treatments remain unknown, however. OBJECTIVES: We aimed to characterize AIS thrombi from COVID-19 patients by immunohistology and to compare their response to thrombolysis to that of AIS thrombi from non-COVID-19 patients. PATIENTS/METHODS: For this monocentric cohort study, 14 thrombi from COVID-19 AIS patients and 16 thrombi from non-COVID-19 patients, all recovered by endovascular therapy, were analyzed by immunohistology or subjected to ex vivo thrombolysis by tissue-type plasminogen (tPA)/plasminogen. RESULTS: COVID-19 AIS thrombi were rich in neutrophils and contained NETs, but not spike protein. Thrombolysis assays revealed a mean resistance profile to tPA/plasminogen of COVID-19 AIS thrombi similar to that of non-COVID-19 AIS thrombi. The addition of DNase 1 successfully improved thrombolysis by potentiating fibrinolysis irrespective of COVID-19 status. Levels of neutrophil, NETs, and platelet markers in lysis supernatants were comparable between AIS thrombi from non-COVID-19 and COVID-19 patients. CONCLUSIONS: These results show that COVID-19 does not impact NETs content or worsen fibrinolysis resistance of AIS thrombi, a therapeutic hurdle that could be overcome by DNase 1 even in the context of SARS-CoV-2 infection.


Subject(s)
Brain Ischemia , COVID-19 Drug Treatment , Ischemic Stroke , Stroke , Thrombosis , Brain Ischemia/drug therapy , Cohort Studies , Fibrinolysis , Humans , SARS-CoV-2 , Stroke/drug therapy , Stroke/metabolism , Thrombolytic Therapy , Thrombosis/metabolism , Tissue Plasminogen Activator/therapeutic use
13.
J Stroke Cerebrovasc Dis ; 31(1): 106179, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1525870

ABSTRACT

OBJECTIVES: This study aims to evaluate shortening door-to-needle time of intravenous recombinant tissue plasminogen activator of acute ischemic stroke patients by multidisciplinary collaboration and workflow optimization based on our hospital resources. MATERIALS AND METHODS: We included patients undergoing thrombolysis with intravenous recombinant tissue plasminogen activator from January 1, 2018, to September 30, 2020. Patients were divided into pre- (January 1, 2018, to December 31, 2019) and post-intervention groups (January 1, 2020, to September 31, 2020). We conducted multi-department collaboration and process optimization by implementing 16 different measures in prehospital, in-hospital, and post-acute feedback stages for acute ischemic stroke patients treated with intravenous thrombolysis. A comparison of outcomes between both groups was analyzed. RESULTS: Two hundred and sixty-three patients received intravenous recombinant tissue plasminogen activator in our hospital during the study period, with 128 and 135 patients receiving treatment in the pre-intervention and post-intervention groups, respectively. The median (interquartile range) door-to-needle time decreased significantly from 57.0 (45.3-77.8) min to 37.0 (29.0-49.0) min. Door-to-needle time was shortened to 32 min in the post-intervention period in the 3rd quarter of 2020. The door-to-needle times at the metrics of ≤ 30 min, ≤ 45 min, ≤ 60 min improved considerably, and the DNT> 60 min metric exhibited a significant reduction. CONCLUSIONS: A multidisciplinary collaboration and continuous process optimization can result in overall shortened door-to-needle despite the challenges incurred by the COVID-19 pandemic.


Subject(s)
Brain Ischemia/drug therapy , COVID-19/complications , Cooperative Behavior , Ischemic Stroke/drug therapy , Patient Care Team , Thrombolytic Therapy/methods , Tissue Plasminogen Activator/administration & dosage , Administration, Intravenous , Early Medical Intervention , Emergency Medical Services , Female , Fibrinolytic Agents/administration & dosage , Fibrinolytic Agents/therapeutic use , Humans , Male , Pandemics , SARS-CoV-2 , Time Management , Time-to-Treatment , Tissue Plasminogen Activator/therapeutic use , Treatment Outcome , Workflow
14.
Neurologist ; 26(6): 271-273, 2021 Nov 04.
Article in English | MEDLINE | ID: covidwho-1501227

ABSTRACT

INTRODUCTION: Wake-up strokes are challenging to manage due to unknown time of onset. Recently, the wake-up trial demonstrated that recombinant tissue plasminogen activator (rtPA) could be administered based on the magnetic resonance imaging (MRI)- diffusion weighted imaging/fluid attenuated inversion recovery mismatch. Many still doubt the safety results due to the higher rate of hemorrhagic conversion reported. Although it was statistically insignificant, the study was terminated early. Furthermore, Corona virus disease-19 is associated with coagulopathy and a higher risk of hemorrhagic conversion. CASE REPORT: A 46-year-old fully functioning male presented with a wake-up right hemiparesis, right facial droop, and expressive aphasia. His National Institute of Health Stroke Scale was 4 upon arrival. Last known well state was >4.5 hours. He tested positive for SARS-CoV-2 viral infection. He had left distal-M2 occlusion. He was deemed not a candidate for rtPA. Hyperacute-MRI protocol showed diffusion weighted imaging/fluid attenuated inversion recovery mismatch. The patient received rtPA at 6.5 hours from the last knwn well state. Follow-up MRI-susceptibility weighted imaging revealed fragmented clot. The stroke burden was less than that shown on the initial computed tomography-perfusion scans implying saved penumbra. There was no hemorrhagic conversion despite low fibrinogen levels. CONCLUSION: The hyperacute-MRI protocol for wake-up COVID-19 associated strokes might be a safe option.


Subject(s)
Brain Ischemia , COVID-19 , Ischemic Stroke , Stroke , Brain Ischemia/drug therapy , Diffusion Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , SARS-CoV-2 , Stroke/diagnostic imaging , Stroke/drug therapy , Thrombolytic Therapy , Tissue Plasminogen Activator/therapeutic use
15.
Acta Neurol Scand ; 145(1): 47-52, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1367290

ABSTRACT

OBJECTIVE: Intravenous thrombolysis (IVT) with recombinant tissue plasminogen activator is the core medical therapy of acute ischaemic stroke (AIS). COVID-19 infection negatively modifies acute stroke procedures and, due to its pro-coagulative effect, may potentially impact on IVT outcome. Thus, short-term efficacy and safety of IVT were compared in patients with and without evidence of SARS-CoV-2. METHODS: An observational, retrospective study included 70 patients with AIS, including 22 subjects (31%) with evidence of acute COVID-19 infection, consecutively treated with IVT in 4 stroke centres between 15 September and 30 November 2020. RESULTS: Patients infected with COVID-19 were characterized by higher median of National Institute of Health Stroke Scale (NIHSS) score (11.0 vs. 6.5; p < .01) and D-dimers (870 vs. 570; p = .03) on admission, higher presence of pneumonia (47.8% vs. 12%; p < .01) and lower percentage of 'minor stroke symptoms' (NIHSS 1-5 pts.) (2% vs., 18%; p < .01). Hospitalizations were longer in patients with COVID-19 than in those without it (17 vs. 9 days, p < .01), but impact of COVID-19 infection on patients' in-hospital mortality or functional status on dismission has been confirmed neither in uni- or multivariate analysis. CONCLUSION: SARS-CoV-2 infection prolongs length of stay in hospital after IVT, but does not influence in-hospital outcome.


Subject(s)
Brain Ischemia , COVID-19 , Ischemic Stroke , Stroke , Brain Ischemia/complications , Brain Ischemia/drug therapy , Fibrinolytic Agents/therapeutic use , Humans , Retrospective Studies , SARS-CoV-2 , Stroke/complications , Stroke/drug therapy , Thrombolytic Therapy , Tissue Plasminogen Activator/therapeutic use , Treatment Outcome
16.
BMJ Case Rep ; 14(8)2021 Aug 03.
Article in English | MEDLINE | ID: covidwho-1341318

ABSTRACT

SARS-CoV-2 has proven its versatility in host presentations; one such presentation is a hypercoagulable state causing large-vessel thrombosis. We report a case on a previously asymptomatic COVID-19-positive patient presenting with an acute ischaemic stroke and an incidental left internal carotid artery thrombus. The patient's medical, social and family history and hypercoagulability screening excluded any other explanation for the left carotid thrombus or stroke, except for testing positive for the COVID-19. This case explores the known hypercoagulable state associated with COVID-19 and the effect of the virus on the host's immune response. It also questions whether administration of recombinant tissue plasminogen activator (t-PA), according to the American Heart Association guidelines, following a negative head CT for haemorrhagic stroke is safe without prior extended imaging in this patient population. We recommend, in addition to obtaining a non-contrast CT scan of the brain, a CT angiogram or carotid duplex of the neck be obtained routinely in patients with COVID-19 exhibiting stroke symptoms before t-PA administration as the effects may be detrimental. This recommendation will likely prevent fragmentation and embolisation of an undetected carotid thrombus.


Subject(s)
Brain Ischemia , COVID-19 , Carotid Artery Thrombosis , Ischemic Stroke , Stroke , Brain Ischemia/diagnostic imaging , Brain Ischemia/etiology , Carotid Artery Thrombosis/complications , Carotid Artery Thrombosis/diagnostic imaging , Carotid Artery Thrombosis/drug therapy , Female , Humans , SARS-CoV-2 , Stroke/drug therapy , Stroke/etiology , Tissue Plasminogen Activator/therapeutic use
17.
Telemed J E Health ; 28(4): 481-485, 2022 04.
Article in English | MEDLINE | ID: covidwho-1310889

ABSTRACT

Introduction: The coronavirus disease 2019 (COVID-19) pandemic has significantly impacted acute stroke care globally. Decreased stroke presentations and concern for delays in acute stroke care have been identified. This study evaluated the impact of COVID-19 on the timely treatment of patients with thrombolytics at hospitals utilizing telestroke acute stroke services. Methods: Acute stroke consultations seen in 171 hospitals (19 states) via telestroke from December 1, 2019, to June 27, 2020, were extracted from the TeleCare™ database. The consults were divided into pre-COVID and COVID groups (March 15, 2020, start of COVID group). The consults were reviewed for age, sex, hospital, state, date seen, last known normal, arrival time, consult call time, needle time, thrombolytic candidate, and National Institutes of Health Stroke Scale (NIHSS) score. The total number of consults, median door to needle (DTN) time for emergency department (ED) patients, and call to needle (CTN) time for inpatients were calculated. Results: Pre-COVID, 15,226 stroke consults were evaluated compared with 11,105 in the COVID group, a 27% decrease. Pre-COVID, 1,071 ED patients (7.9%) received thrombolytics and 66 inpatients (4.0%), while COVID, 813 ED patients (8.2%) and 70 inpatients (5.7%). The median DTN time for ED patients pre-COVID was 42 (32, 55) versus 40 (31, 52) in the COVID group, with no statistically significant difference between groups. CTN time pre-COVID was 53 (35, 67) versus 46 (35, 61) in the COVID group, with no statistically significant difference between groups. Conclusions: Telestroke assessments allowed for uninterrupted acute stroke care and treatment stability despite nursing and other resource realignments triggered by the COVID-19 pandemic.


Subject(s)
COVID-19 , Stroke , Telemedicine , Fibrinolytic Agents/therapeutic use , Humans , Pandemics , Retrospective Studies , Stroke/drug therapy , Stroke/therapy , Thrombolytic Therapy , Time Factors , Time-to-Treatment , Tissue Plasminogen Activator/therapeutic use , Treatment Outcome
18.
BMJ Case Rep ; 14(4)2021 Apr 19.
Article in English | MEDLINE | ID: covidwho-1194192

ABSTRACT

Emerging evidence suggests that novel COVID-19 is associated with increased prothrombotic state and risk of thromboembolic complications, particularly in severe disease. COVID-19 is known to predispose to both venous and arterial thrombotic disease. We describe a case of a 61-year-old woman with history of type II diabetes, hypertension and hyperlipidaemia who presented with dry cough and acute abdominal pain. She was found to have a significantly elevated D-dimer, prompting imaging that showed thrombi in her right ventricle and aorta. She had rapid clinical deterioration and eventually required tissue plasminogen activator with subsequent durable clinical improvement. This case highlights a rare co-occurrence of venous and arterial thrombi in a patient with severe COVID-19. Further studies are needed to clarify the molecular mechanism of COVID-19 coagulopathy, the utility of D-dimer to predict and stratify risk of thrombosis in COVID-19, and the use of fibrinolytic therapy in patients with COVID-19.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Thrombosis , Aorta/pathology , COVID-19/complications , Diabetes Mellitus, Type 2/complications , Female , Fibrin Fibrinogen Degradation Products/analysis , Heart Ventricles/diagnostic imaging , Heart Ventricles/pathology , Humans , Middle Aged , Thrombosis/complications , Thrombosis/diagnostic imaging , Thrombosis/drug therapy , Tissue Plasminogen Activator/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL